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ABSTRACT  
 
The purpose of this paper is to examine methods that 
analyze the hypersonic aerodynamics and 
aerothermodynamics for capsule reentry vehicles.  The 
aerodynamic techniques covered are computational 
Newtonian, which include straight, modified, and 
Busemann-Newtonian.  The aerothermodynamic 
approximations covered are the Sutton-Grave’s and 
Chapman’s Equations for stagnation point, convective 
heating rates; and the Lees-Dorodnitsyn’s and Fay-
Riddell’s similarity transformations for convective 
heating along the body.  Validation data includes three-
dimensional and axisymmetric comparisons to Beagle-
2, Mars Pathfinder, Stardust, and Apollo-4.  The 
analysis hinges on the computations of GT-NASCART 
and CATIA.  GT-NASCART is a CFD program for 
Windows or MAC developed at Georgia Tech.  CATIA 
is a French-based CAD and mesher program.  
Additional topics covered – but in less, relative detail -- 
are planetary atmospheric conditions; post-shock 
calculations for equilibrium flow; viscous and boundary 
layer effects; trajectory effects; comparisons among 
half-angle cones and frontal radius; shape-change 
ablation; and hypersonic flow characteristics. 
 
1. MOLECULAR INTERACTION OF AIR  
 
     The proceedings in this paper assume a continuum 
flow of local thermodynamic and chemical equilibrium.  
Continuum flow assumes that the mean molecular free 
path λ is small to the power of 10-7 for altitudes below 
92 km (earth) or when Knudsen Number Kn is less than 
a value of power 10-4.  As altitude increases, density ρ 
decreases, λ increases to 0.3048 m at 100,000 m, and 
thus Kn increases.  Between approximately 90 km and 
150 km is the transitional regime, and above 150 km is 
the free-molecular flow regime.  At 100>Kn>1, the 
Euler and Navier-Stokes equations fail and “bridging” 
functions which account for the Kn are involved.  
    Equilibrium flow states that when density is 
sufficiently high and chemical reaction rates occur 
significantly faster than the “time scales of local fluid 
motion” [1] the infinite number of collisions among 
molecules produce a chemical equilibrium of reaction 
rates.  Equilibrium flow is in contrast to frozen flow and 
non-equilibrium flow.  Frozen flow assumes molecules 
cannot dissociate; that only one thermodynamic 
property is needed to uniquely define a state; and  

 
generally acceptable up to low supersonic speeds.  
Nonequilibrium occur when molecules achieve 
insufficient collisions to produce equilibrium, i.e. 
during a strong shock wave (dissociation nonequil) or 
rapid expansion (recombination nonequilibrium).   
     For earth conditions, air molecular weight is constant 
for altitudes below 100 km [1].  To determine 
freestream conditions based on geometric altitude, scale 
height, and atmospheric layers; the linear temperature 
and exponential density equations are utilized, with a 
less than 5% error U.S . Standard Atmosphere 1976 
 
2. HYPERSONIC FLOW  
 
     Hypersonic flow occurs approximately after Mach 5.  
In this regime, the laws of supersonic aerodynamics 
change as significantly as subsonic to supersonic.   
A wedge at 15º degree angle of attack will produce an 
18º shock wave [2].  Hypersonic flow possesses smaller 
ρ, thicker boundary layers, and a very thin shock layer 
that conducts a shock-viscous boundary layer 
interaction, where the viscosity significantly affects the 
pressures and heat rates, compared to supersonic flow. 
 
2.1 Straight and Modified Newtonian Flow  
     After his postulate of F=ma, Newton egregiously 
theorized a stream of particles in rectilinear motion 
impacting a surface will lose all normal momentum but 
conserve all tangential momentum.  While Newton’s 
contemporary colleagues pigeonholed his fluid 
mechanics theory, Newton’s later admirers noticed that 
his theory was well-suited for hypersonic flow – 
validating Newton’s brilliant foresight -- where flow 
behaves ideally as a stream of particles.   
     In hypersonic aerodynamics, the pressure coefficient  
CP is predicted only by local deflection angle θ and only 
by surfaces directly in frontal flow contact: in Eq. 1,  
P is pressure; V is velocity; subscript 2 is post-shock 
conditions; and subscript ∞ is freestream conditions. 
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For blunted bodies, Lester Lees modified Eq.1 to Eq.2 
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where γ is effective ratio of specific heats, M is Mach, 
and CP,MAX is given by Eq. 3.  From CP values, axial and  
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normal coefficients are calculated through integration.  
Eq. 2 will produce better results than Eq. 1 for blunted 
bodies.  As Stardust and Apollo data will show, 
modified and straight Newtonian solutions produce 
values within 2% to 25% of each other.  For high M and 
high geometric altitudes – earth case, M>42, above 
92km – γ approaches a value of one, equating the 
maximum CP as value of two.  For high M and high 
altitudes, Eq. 2 returns to its original form, that is Eq. 1.   
 
2.1.2 Calculation of Post-shock γ  
    Eq. 1 only requires angle of attack α and θ.  Eq. 2 
additionally requires post-shock γ and freestream M.  In 
hypersonics, isentropic functions are meaningless.  
Even with a “z” correction factor, Eq. 4 is useless, since 
the speed of sound equation is derived from temperature 
and pressure isentropic relations.  The “z” correction 
factor accounts for molecular dissociation in hypersonic 
temperatures.  In Eq. 4, variables are “a” speed of 
sound; P pressure; T temperature; and R Universal Gas 
Constant, 8314 (J/kg-mol·K).  Instead, γ is computed  
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by Eq. 5.  Density ratio is calculated using an iterative 
solution of the continuity, momentum and energy 
conservation equations through enthalpy, pressure, and 
temperature tables from [3] and [4] for earth values.   
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2.2 Newtonian-Busemann Method  
      Eq. 1 and 2 are evaluated for a flat plate at an angle 
of inclination; through double or triple integration,  
Eq. 1 and 2 can evaluate curved surfaces.  When the 
geometry is curved, however, a centrifugal force will 
act on the Newtonian fluid elements decreasing 
Newtonian pressure and introducing a centrifugal force 
term.  Eq. 6 is a three-dimensional Newtonian 
centrifugal-force correction or Newtonian-Busemann. 
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When Eq. 6 is plotted against straight Newtonian and 
numerical data over a circular cylinder flowing at 
hypersonic speeds with γ as 1.4, Fig. 1 displays straight 
Newtonian as more accurate to the numerical data from 
[1] than the Busemann method.  The reason that Figure 
7 displays a better reading for straight Newtonian and 
not centrifugal-corrected is not that Newtonian-
hypersonic theory is faulty but rather that Newtonian-
hypersonic theory operates best at infinite Mach 
numbers and a gamma equal to unity [2]. 
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Fig. 1. Busemann method vs. Straight Newtonian  
 
2.3 Tangent-Wedge, Cone Methods  
     The tangent-wedge and tangent-cone methods are 
methods (no general equations) that allow the prediction 
of surface pressure based on the assumption that local 
surface pressure is dependent on local surface 
inclination (similar to straight Newtonian flow) except 
with the inclusion of the hypersonic similarity 
parameter.  The wedge method is valid only for 2-d 
shapes with constant slope, and the cone method is 
valid for slender axisymmetric shapes.  The definition 
of “slender shapes” is an engineering “hand-wave.”  
While the –wedge and –cone methods are more accurate 
(to 4% in some cases), straight or modified Newtonian 
is very sufficient as a first degree approximation.   
 
2.4 CATIA and GT-NASCART  
     GT-NASCART (CFD) provides a graphical and 
tabulated aerodynamic output for two-dimensional or 
three-dimensional, non-axisymmetric or axisymmetric, 
geometries for inviscid, Euler, Navier-Stokes, and 
straight or modified Newtonian solutions.  CATIA 
provides the mesh points.  The CPU time (for Dell9200) 
for GT-NASCART is 45 min. for linear, frontal triangle 
mesh (~3000 nodes, ~6000 elements); 15 min. for 
linear, frontal quadrilateral mesh (~3000 nodes, ~3000 
elements); and the percent error between them is less 
than 0.4%.  Using a parabolic mesh in CATIA produces 
incorrect results (reason unknown) in GT-NASCART.   

          
 Fig 2. CATIA Beagle-2 Mesh (left) and Un-meshed (right) 

 



 

3. AEROTHERMODYNAMICS  
 
     In hypersonic flow, vehicle heating becomes a 
primary concern. Temperatures behind the shock may 
reach 6000 K (ICBM) to 11,000 K (lunar return).  Gas 
molecules dissociate from the extreme temperatures.  At 
large entry velocities, such as 11 km/s, radiative heating 
becomes an important consideration: in the Apollo 
missions, the ratio between radiative heating to 
convective heating reached approximately 0.3 [2], 
requiring additional thermal protection systems (TPS).   
     Equ.7 with constants C, M, and N accurately 
describe (to a first degree approximation) the heating 
rates along a body; the convective heating stagnation 
points; or the radiative heating points.  C, N, and M are 
separate constants different for each application; and M 
in Eq. 7 is not for Mach number, as mentioned in Eq. 3.  
              (7) MN
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     While molecular dissociation absorbs much of the 
energy and heat from the shock, the molecules may also 
re-associate post-shock, possibly at the vehicle outer 
geometry, releasing large amounts of heat.  A non-
catalytic surface prevents re-association of dissociated 
gas molecules at the body’s outer geometry.  The 
prevention of re-association precludes the release of 
energy and heat.  However, a non-catalytic surface is 
useless if the molecules have re-associated before 
impacting the surface.  A fully non-catalytic wall has a 
thermal conductivity (k) of zero; and a fully catalytic 
wall has k of near-infinity.  When graphed against heat 
rate, a catalytic wall at equilibrium can experience a 
70% greater convective heat rate than a non-catalytic 
wall.  Direction Simulation Monte Carlo (DSMC) is 
required to create a bridging relation between non-
catalytic and fully-catalytic against heat rate convection, 
although the pattern appears similar to the bridging 
functions of Knudsen numbers. 
     Viscous effects will affect the heat transfer to the 
vehicle.  Transition from laminar to turbulent boundary 
layers will significantly increase the heat transfer, 
depending on the thickness of the boundary layer with 
respect to the body and the strength of the shock or 
shock-shock interaction wave.  The effect of boundary 
layers at hypersonic speeds will also depend on the 
geometry configuration, angle of attack, and freestream 
conditions.  A higher angle of attack will reduce the 
boundary layer, but increase the chance for shock 
detachment.   
 
3.1 Similarity Transformations  
     During his Ph.D. dissertation in 1908 to Dr. Prandtl, 
Dr. H.Blasius derived his famous “Blasius equation.” 
   (8) 0'''''2 =+ fff

With f representing a function and tick marks 
representing derivatives, Eq. 8 allows partial differential 
equations to transform into ordinary differential 
equations.  A similarity variable exists between any two 
properties if the properties subscribe to Eq. 8, the 
Blasius Solution.  Due to page limits, the full 
derivations of the Fay-Riddell and Lees-Dorodnitsyn 
are left to the reader as well as the transformation works 
of R. Probstein, L. Lees [5], and van Driest.   
 
3.1.1 Fay and Riddell Transformation  
The Fay-Riddle transformation Eq. 9 relates properties 
at coordinates (x,y) to similarity coordinates (S,η) with 
constant k as 1 for axisymmetric; k as 0 for 2-d; 
subscript w wall and e freestream-boundary layer edge; 
u velocity; r radius; and μ viscosity.  The stagnation  
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heat transfer rate (q dot) for laminar flow is Eq. 10 with 
Pr as Prandtl’s number; H total enthalpy; h enthalpy in 
boundary layer; Le Lewis’ number; subscript t as  
stagnation point value; and du/dx velocity gradient  
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defined in Eq. 11.  In Eq. 11, q infinity is freestream 
dynamic pressure and Φ is θ’s complement angle.   
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3.1.2 Lees-Dorodnitsyn Transformation  
Eq. 12, Lees-Dorodnitsyn, relates properties at 
coordinate (x,y) to similarity coordinates (S,η) 
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Eq. 13 is the heat rate along a sphere of radius r along 
length x for thermal conductivity k.   
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Eq. 14 represents the heat rate along a cone of radius r; 
half-angle θ; total stagnation H at boundary layer edge 
e; and specific heat cp at constant pressure.   
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Eq. 15 represents the value of g’(0) as the derivative of 
the ratio of total enthalpy to boundary layer (e) edge 
enthalpy.  An integral solution to g’(0) is given in [5]. 
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4. MARS PATHFINDER & BEAGLE-2  
 
     In Table 1, for an axisymmetric body at zero angle, a 
less than ~2% error occurred for modified and straight 
Newtonian over a Mach range of 12 to 22 [6].  For 
Mach above 16, straight Newtonian produced a 2% less 
error than modified Newtonian, but at Mach below 12, 
straight Newtonian produced a 4% more error than 
modified Newtonian.  As mentioned in Section 2.2, 
straight Newt operates best at infinite Mach and γ unity.   
     In Table 2, for a non-axisymmetric body at angles 
zero to 11, straight Newtonian produced far worse 
percent errors than Table 1 predictions.  However, a 
20% error in axial coefficient compared to [7] data is 
adequate for a 15-minute CFD Newtonian solution.  
The 66% error in normal coefficient is traced to the 
decimal place value required for adequate solutions.   
 

Table 1: Mars Pathfinder Axisymmetric Drag Coefficients 

 
 

Table 2: Beagle-2 Axial and Normal Coefficients, Mach 28 

 
 
 
 
 

5. APOLLO-4   
 
     Fig. 3-6 displays Apollo 4 aerodynamic coefficients 
comparisons among flight data and straight Newtonian. 
The flight data Mach number ranges from Mach 6 to 10, 
but little variation of aerodynamic coefficients against 
Mach number occurred after Mach 6 [8].  For Lift-to-
Drag comparisons Fig 3, Newtonian theory agrees quite 
well with flight data, less than 10% error.  In Fig 4, 
normal coefficients show a decreasing percent error as 
Apollo 4 capsule increases from 130 to 180 degrees – 
31% to 24% error.  In Fig. 5, the axial coefficient shows 
an increasing percent error as angle of attack increases – 
9% to 22% error.  In Fig 6, the moment coefficient 
shows a very poor correlation between flight data and 
numerical data, except for angles 170 and 180 degrees 
[9].  The reason for Figure 4 and 5 percent error is that 
as angle of attack increases, less total capsule area is 
covered by hypersonic Newtonian flow, and thus 
overestimation of aerodynamic data.  The reason for 
Fig. 6 large percent error is that the moment center must 
be exact to obtain any reasonable moment coefficient 
percent error (less than 20%).  The moment coefficient 
values dealt with are on the two to three decimal scale, 
and the CATIA model is a perfect geometry compared 
to the protrusions of Apollo-4.  The smallest deviation 
of geometry could cause a significant percent error.  
 

 
Fig 3. L/D vs. Angle of Attack 

 

 
Fig 4. Normal Coefficient  vs. Angle of Attack 

 

 



 

 
Fig 5. Axial Coefficient  vs. Angle of Attack 

 

 
Fig 6. Moment Coefficient  vs. Angle of Attack 

 
6. STARDUST  
 
6.1 Aerodynamic Data 
     For Fig. 7-10 graphs, Stardust aerodynamic 
coefficients are compared using NASA LAURA, 
straight Newtonian, and modified Newtonian solutions 
[10].  The percent error between straight to modified 
Newtonian aerodynamic coefficients is 5% average.  
The average percent error between modified Newtonian 
and NASA LAURA data is 4.17% for axial coefficients, 
12.21% for normal coefficients, and 44.79% for 
moment coefficients.  In Fig. 7, LAURA displays very 
little axial coefficient deviation between itself at Mach 
35 and Mach 12.  In Fig. 8, axial coefficients solutions 
vary greatly at low but not high Mach numbers.  In  
Fig. 9, normal coefficients among straight Newtonian, 
modified Newtonian, and LAURA show good 
agreement with each other at 5 and 10 degrees angle, 
except at Mach 10.  Fig. 10 moment coefficients 
represent the same large errors as in Fig. 6. 
 

 
Fig 7. Axial Coefficient vs. Angle of Attack 

 
Fig 8. Axial Coefficient  vs. Mach Number 

 

 
Fig 9. Normal Coefficient  vs. Mach Number 

 

 
Fig 10. Moment Coefficient  vs. Mach Number 

 
6.2 Shape Change-Ablation 
     Under a maximum heat rate of 1200 W/cm2, the 
Stardust Capsule will recess its frontal area (diameter) 
and increase its nose radius due to TPS ablation at 
approximately Mach 40.5 at 70 km altitude and below 
[11].  Fig. 11 displays the change in pressure 
coefficients from the non-ablative Stardust to the 
ablative Stardust using a straight Newtonian solution.  
Fig. 11 is a graph of Cp versus Y-axes body location 
(not in cardinal order).  The ablative Stardust Cp fall 
very closely with the non-ablative Stardust up to a Y 
value of 0.12 m, then begin to deviate across the frontal 
~60 degree half-angle slope.  The difference in CA 
values between ablative and non-ablative capsules is 
14%.  Based on [11], the percent error in CA values at 
zero angle of attack between ablative and non-ablative 
capsules is 1%.  The GT-NASCART Stardust nose-
section ablation change agrees with LAURA: 1% 

 



 

change in aerodynamic coefficients.  The frontal half-
angle is the problem, which is after Y-position 0.10 on 
Figure 14.  This 13% discrepancy between GT-
NASCART and LAURA leads to the conclusion that 
(most likely) a user-input error for frontal half-angle 
occurred in CATIA, since the larger discrepancies begin 
after the nose radius.  However, the percent error is 
approximately small so the cause may also stem from 
plain Newtonian-LAURA discrepancy.   
 

 
Fig 11. Ablation Effects: Cp versus Y-axes body location  

 
7. CONCLUSION AND ACKNOWLEDGEMENTS 
     The importance of this paper is to review methods of 
analyzing hypersonic aerodynamics and 
aerothermodynamics.  The methods of calculating 
aerodynamics involved straight Newtonian flow, 
modified Newtonian flow, Busemann-Newtonian flow, 
and tangent-wedge/cone methods.  Based on validations 
to Stardust, Apollo-4, Beagle-2, and Mars Pathfinder 
data, the verdict for Newtonian measurement is that 
straight Newtonian is the best degree of approximation 
for hypersonics.  The percent error between straight and 
modified Newtonian is within 5%, but the time to 
calculate post-gamma shock is inefficient.  On average, 
Newtonian methods work best for high Mach, unity 
gamma, axial coefficients, and sometimes normal 
coefficients (15% error).  Due to precise moment 
centers, Newtonian methods are not well-suited for 
moment coefficient calculations.   
     The methods for calculating heat rate involve the 
Sutton-Grave’s, Chapman’s Equation, Fay-Riddle 
Transformation, and Lees-Dorodnitsyn Transformation.  
The Sutton-Grave’s and Chapman’s Equations easily 
calculate the stagnation point, convective heat rate, 
given three constants, density, and velocity.  For 
convective heat rate along a body, the Fay-Riddle 
Transformation calculates the stagnation point, 
convective heat rate based on air flow constants, 
boundary layer edge properties, and a velocity gradient 
that may relate to Newtonian flow.  The Lees-

Dorodnitsyn Transformation calculates the convective 
heat rate along a sphere or cone.  Validation of the F-R 
and L-D Transformations and the percent errors to flight 
data remains for future work. 
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Professor Robert D. Braun and Professor Stephen M. 
Ruffin, for giving me this opportunity, and the graduate 
students at Georgia Tech’s Space System Design Lab, 
for answering an undergraduate’s plethora of questions. 
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